
Singleton design pattern in Java

 We can make constructor as private. So that We can not create an

object outside of the class.

 This property is useful to create singleton class in java.

 Singleton pattern helps us to keep only one instance of a class at any

time.

 The purpose of singleton is to control object creation by keeping private
constructor.

We're going to create a SingleObject class. SingleObject class have its

constructor as private and have a static instance of itself.

SingleObject class provides a static method to get its static instance to

outside world. SingletonPatternDemo, our demo class will

use SingleObject class to get a SingleObject object.

Step 1

Create a Singleton Class.

SingleObject.java

public class SingleObject {

 //create an object of SingleObject

 private static SingleObject instance = new SingleObject();

 //make the constructor private so that this class cannot be

 //instantiated

 private SingleObject(){}

 //Get the only object available

 public static SingleObject getInstance(){

 return instance;

 }

 public void showMessage(){

 System.out.println("Hello World!");

 }

}

Step 2

Get the only object from the singleton class.

SingletonPatternDemo.java

public class SingletonPatternDemo {

 public static void main(String[] args) {

 //illegal construct

 //Compile Time Error: The constructor SingleObject() is not visible

 //SingleObject object = new SingleObject();

 //Get the only object available

 SingleObject object = SingleObject.getInstance();

 //show the message

 object.showMessage();

 }

}

Output

Hello World!

Following implementation shows a classic Singleton design pattern −

public class ClassicSingleton {

 private static ClassicSingleton instance = null;

 private ClassicSingleton() {

 // Exists only to defeat instantiation.

 }

 public static ClassicSingleton getInstance() {

 if(instance == null) {

 instance = new ClassicSingleton();

 }

 return instance;

 }

}

The ClassicSingleton class maintains a static reference to the lone singleton

instance and returns that reference from the static getInstance() method.

Here, ClassicSingleton class employs a technique known as lazy instantiation

to create the singleton; as a result, the singleton instance is not created until

the getInstance() method is called for the first time. This technique ensures

that singleton instances are created only when needed.

